Subjective probability and arbitrage
Where are we?

- Choice under risk - probabilities given objectively

 - Expected Utility Theory
 - crucial axioms:
 - Transitivity - giving order/ranking among alternatives
 - Independence - giving cardinality
 - Stochastic dominance (partial orders)
 - FOSD is equivalent to EU with increasing utility (monotonicity)
 - SOSD is equivalent to EU with concave utility (risk aversion)

 - Risk attitudes
 - risk averse - concave utility
 - risk neutral - linear utility
 - risk seeking - convex utility
Where are we?

- Choice under risk - probabilities given objectively
- Expected Utility Theory

- Transitivity - giving order/ranking among alternatives
- Independence - giving cardinality
- Stochastic dominance (partial orders)
 - FOSD is equivalent to EU with increasing utility (monotonicity)
 - SOSD is equivalent to EU with concave utility (risk aversion)

- Risk attitudes
 - Risk averse - concave utility
 - Risk neutral - linear utility
 - Risk seeking - convex utility
Where are we?

- Choice under risk - probabilities given objectively
- Expected Utility Theory - crucial axioms:
 - **Transitivity** - giving order/ranking among alternatives
Where are we?

- Choice under risk - probabilities given objectively
- Expected Utility Theory - crucial axioms:
 - Transitivity - giving order/ranking among alternatives
 - Independence - giving cardinality

Risk attitudes:
- Risk averse - concave utility
- Risk neutral - linear utility
- Risk seeking - convex utility
Choice under risk - probabilities given objectively

Expected Utility Theory - crucial axioms:

- **Transitivity** - giving order/ranking among alternatives
- **Independence** - giving cardinality

Stochastic dominance (partial orders)
Choice under risk - probabilities given objectively
• Expected Utility Theory - crucial axioms:
 ▶ Transitivity - giving order/ranking among alternatives
 ▶ Independence - giving cardinality
• Stochastic dominance (partial orders)
 ▶ FOSD is equivalent to EU with increasing utility
 (monotonicity)
 ▶ SOSD is equivalent to EU with concave utility
 (risk aversion)
• Risk attitudes
 ▶ risk averse - concave utility
 ▶ risk neutral - linear utility
 ▶ risk seeking - convex utility
Where are we?

- Choice under risk - probabilities given objectively
- Expected Utility Theory - crucial axioms:
 - **Transitivity** - giving order/ranking among alternatives
 - **Independence** - giving cardinality
- Stochastic dominance (partial orders)
 - **FOSD** is equivalent to EU with increasing utility (monotonicity)
 - **SOSD** is equivalent to EU with concave utility (risk aversion)

Risk attitudes:
- **risk averse** - concave utility
- **risk neutral** - linear utility
- **risk seeking** - convex utility
Where are we?

- Choice under risk - probabilities given objectively
- Expected Utility Theory - crucial axioms:
 - **Transitivity** - giving order/ranking among alternatives
 - **Independence** - giving cardinality
- Stochastic dominance (partial orders)
 - **FOSD** is equivalent to EU with increasing utility (monotonicity)
 - **SOSD** is equivalent to EU with concave utility (risk aversion)
- Risk attitudes
 - risk averse - concave utility
 - risk neutral - linear utility
 - risk seeking - convex utility
Risk aversion

Risk aversion (concave utility) can be measured **locally**:

- **Absolute Risk Aversion**

$$ARA(x) = -\frac{u''(x)}{u'(x)}$$
Risk aversion

Risk aversion (concave utility) can be measured **locally**:

- **Absolute Risk Aversion**

 \[ARA(x) = - \frac{u''(x)}{u'(x)} \]

- **Relative Risk Aversion**

 \[RRA(x) = - \frac{xu''(x)}{u'(x)} \]
Risk aversion

Risk aversion (concave utility) can be measured \textit{locally}:

\begin{itemize}
 \item Absolute Risk Aversion
 \[ARA(x) = - \frac{u''(x)}{u'(x)} \]
 \item Relative Risk Aversion
 \[RRA(x) = - \frac{xu''(x)}{u'(x)} \]
\end{itemize}

Based on these measures we define classes of utility functions:

\begin{itemize}
 \item **Constant Absolute Risk Aversion (CARA)** - wealth invariant
 \item **Decreasing Absolute Risk Aversion (DARA)** - wealthier - accept more
 \item **Constant Relative Risk Aversion (CRRA)** - scale invariant
 \item **Logarithmic utility function**
Risk aversion

Risk aversion (concave utility) can be measured **locally**:

- **Absolute Risk Aversion**
 \[ARA(x) = -\frac{u''(x)}{u'(x)} \]

- **Relative Risk Aversion**
 \[RRA(x) = -\frac{xu''(x)}{u'(x)} \]

Based on these measures we define classes of utility functions:

- **Constant Absolute Risk Aversion (CARA)** - wealth invariant
 - Linear utility function
Risk aversion

Risk aversion (concave utility) can be measured locally:

- Absolute Risk Aversion

\[ARA(x) = -\frac{u''(x)}{u'(x)} \]

- Relative Risk Aversion

\[RRA(x) = -\frac{xu''(x)}{u'(x)} \]

Based on these measures we define classes of utility functions:

- **Constant Absolute Risk Aversion (CARA)** - wealth invariant
 - Linear utility function
- **Decreasing Absolute Risk Aversion (DARA)** - wealthier - accept more

- **Constant Relative Risk Aversion (CRRA)** - scale invariant
 - Logarithmic utility function
Risk aversion

Risk aversion (concave utility) can be measured **locally**:

- **Absolute Risk Aversion**

 \[ARA(x) = -\frac{u''(x)}{u'(x)} \]

- **Relative Risk Aversion**

 \[RRA(x) = -\frac{xu''(x)}{u'(x)} \]

Based on these measures we define classes of utility functions:

- **Constant Absolute Risk Aversion (CARA)** - wealth invariant
 - Linear utility function
- **Decreasing Absolute Risk Aversion (DARA)** - wealthier - accept more
 - **Constant Relative Risk Aversion (CRRA)** - scale invariant
Risk aversion

Risk aversion (concave utility) can be measured locally:

- **Absolute Risk Aversion**
 \[
 ARA(x) = -\frac{u''(x)}{u'(x)}
 \]

- **Relative Risk Aversion**
 \[
 RRA(x) = -\frac{xu''(x)}{u'(x)}
 \]

Based on these measures we define classes of utility functions:

- **Constant Absolute Risk Aversion (CARA)** - wealth invariant
 - Linear utility function
- **Decreasing Absolute Risk Aversion (DARA)** - wealthier - accept more
 - **Constant Relative Risk Aversion (CRRA)** - scale invariant
 - Logarithmic utility function
Risk aversion

CARA utility functions

\[U_a(x) = \frac{1}{a} - \frac{1}{a} \exp(-ax) \]

CRRA utility functions

\[U_a(x) = \frac{1}{1-a} \cdot x^{1-a} - 1/(1-a) \]

Red line is log
Two issues

- It is often the case that probabilities are not objectively given - what then?
Two issues

- It is often the case that probabilities are not objectively given - what then?
- Many people violate expected utility axioms - first lecture
Two issues

- It is often the case that probabilities are not objectively given - what then?
- Many people violate expected utility axioms - first lecture
- Why don’t we give up some of the axioms and invent the new ones?
Two issues

- It is often the case that probabilities are not objectively given - what then?
- Many people violate expected utility axioms - first lecture
- Why don’t we give up some of the axioms and invent the new ones?
 - Non-expected utility models and behavioral economics - later
Games

a) The dealer will pay $1 if you flip a coin and it lands head up. How much will you pay to play this game?
Games

a) The dealer will pay $1 if you flip a coin and it lands head up. How much will you pay to play this game?
b) The dealer will pay $2 if you roll a die and it lands with a 6 up. How much will you pay to play this game?
Games

a) The dealer will pay $1 if you flip a coin and it lands head up. How much will you pay to play this game?
b) The dealer will pay $2 if you roll a die and it lands with a 6 up. How much will you pay to play this game?
c) The dealer will pay $2 if the card you draw has a rank at least as high as the rank of the card he draws. How much will you pay to play this game?
Bruno de Finetti definition of probability

Let us suppose that an individual is obliged to evaluate the rate p at which he would be willing to exchange the possession of an arbitrary sum S (positive or negative) contingent on the occurrence of a given event, E, for the possession of the sum pS;
Bruno de Finetti definition of probability

Let us suppose that an individual is obliged to evaluate the rate p at which he would be willing to exchange the possession of an arbitrary sum S (positive or negative) contingent on the occurrence of a given event, E, for the possession of the sum pS; we will say by definition that this number p is the measure of the degree of probability attributed by this individual to the event E, or, more simply, that p is the probability of E (according to this individual;
Bruno de Finetti definition of probability

Let us suppose that an individual is obliged to evaluate the rate p at which he would be willing to exchange the possession of an arbitrary sum S (positive or negative) contingent on the occurrence of a given event, E, for the possession of the sum pS; we will say by definition that this number p is the measure of the degree of probability attributed by this individual to the event E, or, more simply, that p is the probability of E (according to this individual; this specification can be implicit if there is no ambiguity)
From symmetry to probability

- **Game a)**: According to classical physics, we should be able to predict how the coin will land.
From symmetry to probability

- **Game a)**: According to classical physics, we should be able to predict how the coin will land.
- Yet, we don’t know all the factors and the calculations are too difficult anyway.
From symmetry to probability

- **Game a)**: According to classical physics, we should be able to predict how the coin will land.
- Yet, we don’t know all the factors and the calculations are too difficult anyway.
- But there is symmetry in the problem (none of the factors interacts in a way that differs significantly with the different sides of the coin).
From symmetry to probability

- **Game a):** According to classical physics, we should be able to predict how the coin will land.
- Yet, we don’t know all the factors and the calculations are too difficult anyway.
- But there is symmetry in the problem (none of the factors interacts in a way that differs significantly with the different sides of the coin).
- Hence we would pay the same if a head were replaced by a tail.

\[p + \frac{1}{2} = 1 \implies p = \frac{1}{2} \]
From symmetry to probability

- **Game a)**: According to classical physics, we should be able to predict how the coin will land.
- Yet, we don’t know all the factors and the calculations are too difficult anyway.
- But there is symmetry in the problem (none of the factors interacts in a way that differs significantly with the different sides of the coin).
- Hence we would pay the same if a head were replaced by a tail.
- We believe that there is either tail or head: \(p + p = 1 \) implies \(p = 0.5 \) and we would pay up to $0.5.

- **Game b)**: The same with a die:
- \(p + p + p + p + p + p = 1 \) and hence \(p = \frac{1}{6} \) and we would pay up to $0.33.
From symmetry to probability

- **Game a)**: According to classical physics, we should be able to predict how the coin will land.

- Yet, we don’t know all the factors and the calculations are too difficult anyway.

- But there is symmetry in the problem (none of the factors interacts in a way that differs significantly with the different sides of the coin).

- Hence we would pay the same if a head were replaced by a tail.

- We believe that there is either tail or head: $p + p = 1$ implies $p = 0.5$ and we would pay up to 0.5.

- **Game b)**: The same with a die: $p + p + p + p + p + p = 1$ and hence $p = 1/6$ and we would pay up to 0.33.
Game c)

- There are 52×51 possibilities (probability of each is $\frac{1}{52 \times 51}$)
There are 52×51 possibilities (probability of each is $\frac{1}{52\times51}$).

Once the dealer draws a card, there is 3 more cards in the deck with the same values, hence there is 52×3 outcomes in which the two cards have the same value.
Game c)

- There are 52×51 possibilities (probability of each is $\frac{1}{52\times51}$)
- Once the dealer draws a card, there is 3 more cards in the deck with the same values, hence there is 52×3 outcomes in which the two cards have the same value
- Of the remaining $52 \cdot 51 - 51 \cdot 3 = 52 \cdot 48$ outcomes, the player wins half, $52 \cdot 24$.

So the probability of winning is $\frac{52 \cdot 3 + 52 \cdot 24}{52 \cdot 51} = \frac{27}{51}$. Hence we would pay up to $\$1/period.math$03846 for this game.
Game c)

- There are 52×51 possibilities (probability of each is $\frac{1}{52 \times 51}$).
- Once the dealer draws a card, there is 3 more cards in the deck with the same values, hence there is 52×3 outcomes in which the two cards have the same value.
- Of the remaining $52 \cdot 51 - 51 \cdot 3 = 52 \cdot 48$ outcomes, the player wins half, $52 \cdot 24$.
- So the probability of winning is $\frac{52 \cdot 3 + 52 \cdot 24}{52 \cdot 51} = \frac{27}{51}$. Hence we would pay up to 1.03846 for this game.
Vocabulary of gambling

- **Total stake** S: the amount that the player can win
Vocabulary of gambling

- Total stake S: the amount that the player can win
- Player’s stake pS: the amount that the player pays to play the game
Vocabulary of gambling

- **Total stake** S: the amount that the player can win
- **Player’s stake** pS: the amount that the player pays to play the game
- **Dealer’s stake** $(1 - p)S$: the amount that the dealer is putting up
Vocabulary of gambling

- **Total stake** S: the amount that the player can win
- **Player’s stake** pS: the amount that the player pays to play the game
- **Dealer’s stake** $(1 - p)S$: the amount that the dealer is putting up
- **Player’s odds** $\frac{p}{1 - p}$, often phrased "$p/(1 - p)$ to 1"
Definition of subjective probability:

- Let $A \subseteq \Omega$.

Consider the following bet which pays $1 if there was life on Mars 1 billion years ago (A), $0 if there was not, and tomorrow the answer will be revealed.

Your opponent will be able to choose either to buy such a promise from you at the price you have set, or require you to buy such a promise from your opponent, still at the same price.

In other words: you set the odds, but your opponent decides which side of the bet will be yours.

The price you set is the "operational subjective probability" that you assign to the proposition on which you are betting.
Definition of subjective probability:

- Let $A \subseteq \Omega$.
- Consider the following bet which
 - pays 1 if there was life on Mars 1 billion years ago (A)
Definition of subjective probability:

- Let $A \subseteq \Omega$.
- Consider the following bet which
 - pays 1 if there was life on Mars 1 billion years ago (A)
 - 0 if there was not
Definition of subjective probability:

- Let \(A \subseteq \Omega \).
- Consider the following bet which
 - pays $1 if there was life on Mars 1 billion years ago \((A)\)
 - $0 if there was not
- and tomorrow the answer will be revealed.
Definition of subjective probability:

- Let $A \subseteq \Omega$.
- Consider the following bet which
 - pays 1 if there was life on Mars 1 billion years ago (A)
 - 0 if there was not
- and tomorrow the answer will be revealed.
- You know that your opponent will be able to choose either to buy such a promise from you at the price you have set, or require you to buy such a promise from your opponent, still at the same price.
Definition of subjective probability:

- Let $A \subseteq \Omega$.
- Consider the following bet which
 - pays 1 if there was life on Mars 1 billion years ago (A)
 - 0 if there was not
- and tomorrow the answer will be revealed.
- You know that your opponent will be able to choose either to buy such a promise from you at the price you have set, or require you to buy such a promise from your opponent, still at the same price.
- In other words: you set the odds, but your opponent decides which side of the bet will be yours.
Definition of subjective probability:

- Let $A \subseteq \Omega$.
- Consider the following bet which
 - pays 1 if there was life on Mars 1 billion years ago (A)
 - 0 if there was not
- and tomorrow the answer will be revealed.
- You know that your opponent will be able to choose either to buy such a promise from you at the price you have set, or require you to buy such a promise from your opponent, still at the same price.
- In other words: you set the odds, but your opponent decides which side of the bet will be yours.
- The price you set is the "operational subjective probability" that you assign to the proposition on which you are betting.
The set of all events will be denoted by \mathcal{E}. The event that is certain to occur is Ω. The event that will never occur is \emptyset. Definition of subjective conditional probability: Let $A, B \subseteq \Omega$. Consider the following bet which pays $1 if there was life on Mars 1 billion years ago (A) and there is life on Mars now (B), $0 if there was no life on Mars 1 billion years ago, but there is now. If there is no life on Mars now and the answer will be revealed tomorrow. Then the conditional probability of A given B, written $P(A \mid B)$, is the price which you are willing to exchange this bet for.
The set of all events will be denoted by \mathcal{E}.

The event that is certain to occur is Ω.
The set of all events will be denoted by \mathcal{E}.

The event that is certain to occur is Ω.

The event that will never occur is \emptyset.

Definition of subjective conditional probability:

Let A and $B \subseteq \Omega$.

Consider the following bet which pays $1 if there was life on Mars 1 billion years ago (A) and there is life on Mars now (B), $0 if there was no life on Mars 1 billion years ago, but there is now, is called off if there is no life on Mars now, and the answer will be revealed tomorrow.

Then the conditional probability of A given B, written $P(A|B)$, is the price which you are willing to exchange this bet for.
The set of all events will be denoted by \(\mathcal{E} \).
The event that is certain to occur is \(\Omega \).
The event that will never occur is \(\emptyset \).

Definition of subjective conditional probability:

- Let \(A, B \subseteq \Omega \).
The set of all events will be denoted by \(\mathcal{E} \).

The event that is certain to occur is \(\Omega \).

The event that will never occur is \(\emptyset \).

Definition of subjective conditional probability:

- Let \(A, B \subseteq \Omega \).
- Consider the following bet which:
 - pays $1 if there was life on Mars 1 billion years ago \((A)\)
 - and there is life on Mars now \((B)\),
The set of all events will be denoted by \mathcal{E}.

The event that is certain to occur is Ω.

The event that will never occur is \emptyset.

Definition of subjective conditional probability:

Let $A, B \subseteq \Omega$.

Consider the following bet which

- pays $1 if there was life on Mars 1 billion years ago (A) and there is life on Mars now (B),
- 0 if there was no life on Mars 1 billion years ago, but there is now
The set of all events will be denoted by \mathcal{E}.

The event that is certain to occur is Ω.

The event that will never occur is \emptyset.

Definition of subjective conditional probability:

Let $A, B \subseteq \Omega$.

Consider the following bet which

- pays $1 if there was life on Mars 1 billion years ago (A) and there is life on Mars now (B),
- 0 if there was no life on Mars 1 billion years ago, but there is now
- is called off if there is no life on Mars now
The set of all events will be denoted by \(\mathcal{E} \).

The event that is certain to occur is \(\Omega \).

The event that will never occur is \(\emptyset \).

Definition of subjective conditional probability:

Let \(A, B \subseteq \Omega \).

Consider the following bet which

\- pays $1 if there was life on Mars 1 billion years ago \((A)\) and there is life on Mars now \((B)\),
\- 0 if there was no life on Mars 1 billion years ago, but there is now
\- is called off if there is no life on Mars now

and the answer will be revealed tomorrow.
The set of all events will be denoted by \mathcal{E}.

The event that is certain to occur is Ω.

The event that will never occur is \emptyset.

Definition of subjective conditional probability:

Let $A, B \subseteq \Omega$.

Consider the following bet which
- pays 1 if there was life on Mars 1 billion years ago (A) and there is life on Mars now (B),
- 0 if there was no life on Mars 1 billion years ago, but there is now
- is called off if there is no life on Mars now

and the answer will be revealed tomorrow.

Then the conditional probability of A given B, written $P(A|B)$, is the price which you are willing to exchange this bet for.
Dutch book

- A Dutch book is a sequence of trades that results in a sure loss of money
Dutch book

- A Dutch book is a sequence of trades that results in a sure loss of money
- A person is called coherent if he/she is not susceptible to a Dutch book
A Dutch book is a sequence of trades that results in a sure loss of money.

A person is called coherent if he/she is not susceptible to a Dutch book.

We will now show that a coherent person has to adhere to the following set of axioms:
Dutch book

- A Dutch book is a sequence of trades that results in a sure loss of money.
- A person is called coherent if he/she is not susceptible to a Dutch book.
- We will now show that a coherent person has to adhere to the following set of axioms:
 - Axioms of probability (next slide)
A Dutch book is a sequence of trades that results in a sure loss of money.

A person is called coherent if he/she is not susceptible to a Dutch book.

We will now show that a coherent person has to adhere to the following set of axioms:

- Axioms of probability (next slide)
 - Before we did not need them because probabilities were objectively given.
A Dutch book is a sequence of trades that results in a sure loss of money.

A person is called **coherent** if he/she is not susceptible to a Dutch book.

We will now show that a coherent person has to adhere to the following set of axioms:

- Axioms of probability (next slide)
 - Before we did not need them because probabilities were objectively given
 - Now probabilities are subjective and we have to ensure that they obey certain rules.
Dutch book

- A Dutch book is a sequence of trades that results in a sure loss of money
- A person is called coherent if he/she is not susceptible to a Dutch book
- We will now show that a coherent person has to adhere to the following set of axioms:
 - Axioms of probability (next slide)
 - Before we did not need them because probabilities were objectively given
 - Now probabilities are subjective and we have to ensure that they obey certain rules
 - Transitivity
Dutch book

- A Dutch book is a sequence of trades that results in a sure loss of money
- A person is called coherent if he/she is not susceptible to a Dutch book
- We will now show that a coherent person has to adhere to the following set of axioms:
 - Axioms of probability (next slide)
 - Before we did not need them because probabilities were objectively given
 - Now probabilities are subjective and we have to ensure that they obey certain rules
 - Transitivity
 - Independence
Dutch book

- A Dutch book is a sequence of trades that results in a sure loss of money
- A person is called coherent if he/she is not susceptible to a Dutch book
- We will now show that a coherent person has to adhere to the following set of axioms:
 - Axioms of probability (next slide)
 - Before we did not need them because probabilities were objectively given
 - Now probabilities are subjective and we have to ensure that they obey certain rules
 - Transitivity
 - Independence

The above is exactly equivalent to Subjective Expected Utility.
Axioms of probability

a) \(P(A) \geq 0, \forall A \in \mathcal{E} \)
Axioms of probability

a) $P(A) \geq 0, \forall A \in \mathcal{E}$

b) $P(\Omega) = 1$
Axioms of probability

a) \(P(A) \geq 0, \forall A \in \mathcal{E} \)

b) \(P(\Omega) = 1 \)

c) Two pairwise disjoint events \(A, B \in \mathcal{E} \) satisfy

\[
P(A \cup B) = P(A) + P(B)
\]
Axioms of probability

a) \(P(A) \geq 0, \forall A \in \mathcal{E} \)

b) \(P(\Omega) = 1 \)

c) Two pairwise disjoint events \(A, B \in \mathcal{E} \) satisfy

\[
P(A \cup B) = P(A) + P(B)
\]

d) Conditional probability:

\[
P(A|B) = \frac{P(A \cap B)}{P(B)}
\]
Axioms of probability

a) $P(A) \geq 0, \forall A \in \mathcal{E}$

b) $P(\Omega) = 1$

c) Two pairwise disjoint events $A, B \in \mathcal{E}$ satisfy

$$P(A \cup B) = P(A) + P(B)$$

d) Conditional probability:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

From the above axioms we can deduce the whole probability calculus, e.g.
Axioms of probability

a) \(P(A) \geq 0, \forall A \in \mathcal{E} \)

b) \(P(\Omega) = 1 \)

c) Two pairwise disjoint events \(A, B \in \) satisfy
\[
P(A \cup B) = P(A) + P(B)
\]

d) Conditional probability:
\[
P(A|B) = \frac{P(A \cap B)}{P(B)}
\]

From the above axioms we can deduce the whole probability calculus, e.g.

- We are given a sequence of pairwise disjoint events \(C_1, C_2, \ldots, C_n \)
Axioms of probability

a) \(P(A) \geq 0, \forall A \in \mathcal{E} \)
b) \(P(\Omega) = 1 \)
c) Two pairwise disjoint events \(A, B \in \mathcal{E} \) satisfy
\[
P(A \cup B) = P(A) + P(B)
\]
d) Conditional probability:
\[
P(A|B) = \frac{P(A \cap B)}{P(B)}
\]

From the above axioms we can deduce the whole probability calculus, e.g.

- We are given a sequence of pairwise disjoint events \(C_1, C_2, \ldots, C_n \)
- Then define \(A = C_1 \) and \(B = C_2 \cup \ldots \cup C_n \)
Axioms of probability

a) $P(A) \geq 0, \forall A \in \mathcal{E}$

b) $P(\Omega) = 1$

c) Two pairwise disjoint events $A, B \in \mathcal{E}$ satisfy

$$P(A \cup B) = P(A) + P(B)$$

d) Conditional probability:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

From the above axioms we can deduce the whole probability calculus, e.g.

- We are given a sequence of pairwise disjoint events C_1, C_2, \ldots, C_n
- Then define $A = C_1$ and $B = C_2 \cup \ldots \cup C_n$
- By using additivity

$$P(C_1 \cup C_2 \cup \ldots \cup C_n) = P(C_1) + P(C_2 \cup \ldots \cup C_n)$$
Axioms of probability

a) \(P(A) \geq 0, \forall A \in \mathcal{E} \)

b) \(P(\Omega) = 1 \)

c) Two pairwise disjoint events \(A, B \in \mathcal{E} \) satisfy
\[
P(A \cup B) = P(A) + P(B)
\]

d) Conditional probability:
\[
P(A|B) = \frac{P(A \cap B)}{P(B)}
\]

From the above axioms we can deduce the whole probability calculus, e.g.

- We are given a sequence of pairwise disjoint events
 \(C_1, C_2, \ldots, C_n \)
- Then define \(A = C_1 \) and \(B = C_2 \cup \ldots \cup C_n \)
- By using additivity
 \(P(C_1 \cup C_2 \cup \ldots \cup C_n) = P(C_1) + P(C_2 \cup \ldots \cup C_n) \)
- Do the same many times and you get
 \(P(C_1 \cup C_2 \cup \ldots \cup C_n) = P(C_1) + P(C_2) + \ldots + P(C_n) \)
Axiom a) Possibility: $P(A) \geq 0$

- Consider a bet on some event A
Axiom a) Possibility: $P(A) \geq 0$

- Consider a bet on some event A
- The price you set for it is p
Axiom a) Possibility: $P(A) \geq 0$

- Consider a bet on some event A
- The price you set for it is p
- Suppose that $p < 0$
Axiom a) Possibility: \(P(A) \geq 0 \)

- Consider a bet on some event \(A \)
- The price you set for it is \(p \)
- Suppose that \(p < 0 \)
- Then you opponent would require you to sell this bet
Axiom a) Possibility: $P(A) \geq 0$

- Consider a bet on some event A
- The price you set for it is p
- Suppose that $p < 0$
- Then you **opponent would require you to sell** this bet

<table>
<thead>
<tr>
<th>Partition of Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>$\neg A$</td>
</tr>
</tbody>
</table>
Consider a bet on some event \(A \)

The price you set for it is \(p \)

Suppose that \(p < 0 \)

Then you opponent would require you to sell this bet

<table>
<thead>
<tr>
<th>Partition of (\Omega)</th>
<th>Your Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td></td>
</tr>
<tr>
<td>(\neg A)</td>
<td></td>
</tr>
</tbody>
</table>
Axiom a) Possibility: $P(A) \geq 0$

- Consider a bet on some event A
- The price you set for it is p
- Suppose that $p < 0$
- Then you opponent would require you to sell this bet

<table>
<thead>
<tr>
<th>Partition of Ω</th>
<th>Your Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$-1 + p < 0$</td>
</tr>
<tr>
<td>$\neg A$</td>
<td></td>
</tr>
</tbody>
</table>
Axiom a) Possibility: \(P(A) \geq 0 \)

- Consider a bet on some event \(A \)
- The price you set for it is \(p \)
- Suppose that \(p < 0 \)
- Then you **opponent would require you to sell** this bet

<table>
<thead>
<tr>
<th>Partition of (\Omega)</th>
<th>Your Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(-1 + p < 0)</td>
</tr>
<tr>
<td>(\neg A)</td>
<td>(p < 0)</td>
</tr>
</tbody>
</table>
Axiom b) Certainty: $P(\Omega) = 1$

- Consider a bet on the event Ω
Axiom b) Certainty: $P(\Omega) = 1$

- Consider a bet on the event Ω
- The price you set for it is p
Axiom b) Certainty: $P(\Omega) = 1$

- Consider a bet on the event Ω
- The price you set for it is p
- Suppose that $p > 1$
Axiom b) Certainty: $P(\Omega) = 1$

- Consider a bet on the event Ω
- The price you set for it is p
- Suppose that $p > 1$
- Then you opponent would require you to buy this bet
Axiom b) Certainty: \(P(\Omega) = 1 \)

- Consider a bet on the event \(\Omega \)
- The price you set for it is \(p \)
- Suppose that \(p > 1 \)
- Then you **opponent would require you to buy** this bet

<table>
<thead>
<tr>
<th>Partition of (\Omega)</th>
<th>(\Omega)</th>
</tr>
</thead>
</table>

\(\Omega \)
Axiom b) Certainty: \(P(\Omega) = 1 \)

- Consider a bet on the event \(\Omega \)
- The price you set for it is \(p \)
- Suppose that \(p > 1 \)
- Then you **opponent would require you to buy** this bet

<table>
<thead>
<tr>
<th>Partition of (\Omega)</th>
<th>Your Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Omega)</td>
<td></td>
</tr>
</tbody>
</table>
Axiom b) Certainty: \(P(\Omega) = 1 \)

- Consider a bet on the event \(\Omega \)
- The price you set for it is \(p \)
- Suppose that \(p > 1 \)
- Then you **opponent would require you to buy** this bet

<table>
<thead>
<tr>
<th>Partition of (\Omega)</th>
<th>Your Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Omega)</td>
<td>(1 - p < 0)</td>
</tr>
</tbody>
</table>
Axiom c) Additivity:

\[P(A \cup B) = P(A) + P(B), \quad A \cap B = \emptyset \]

Consider bets on the events \(A, B \) and \(A \cup B \), where \(A, B \subseteq \Omega \), \(A \cap B = \emptyset \).
Axiom c) Additivity:
\[P(A \cup B) = P(A) + P(B), \quad A \cap B = \emptyset \]

- Consider bets on the events \(A, B \) and \(A \cup B \), where \(A, B \subseteq \Omega, \quad A \cap B = \emptyset \)
- The prices you set for them are \(p_A, p_B \) and \(p \), respectively
Axiom c) Additivity:
\[P(A \cup B) = P(A) + P(B), \quad A \cap B = \emptyset \]

- Consider bets on the events \(A, B \) and \(A \cup B \), where \(A, B \subseteq \Omega, \ A \cap B = \emptyset \)
- The prices you set for them are \(p_A, p_B \) and \(p \), respectively
- Suppose that \(p < p_A + p_B \)
Axiom c) Additivity:
\[P(A \cup B) = P(A) + P(B), \quad A \cap B = \emptyset \]

- Consider bets on the events \(A, B \) and \(A \cup B \), where \(A, B \subseteq \Omega, \ A \cap B = \emptyset \)
- The prices you set for them are \(p_A, p_B \) and \(p \), respectively
- Suppose that \(p < p_A + p_B \)
- Then your **opponent would require you to acquire** the following portfolio:
Axiom c) Additivity:
\[P(A \cup B) = P(A) + P(B), \quad A \cap B = \emptyset \]

- Consider bets on the events \(A, B \) and \(A \cup B \), where
 \(A, B \subseteq \Omega, \ A \cap B = \emptyset \)
- The prices you set for them are \(p_A, p_B \) and \(p \), respectively
- Suppose that \(p < p_A + p_B \)
- Then your **opponent would require you to acquire** the following portfolio:
 - sell the bet on \(A \cup B \)
Axiom c) Additivity:
\[P(A \cup B) = P(A) + P(B), \quad A \cap B = \emptyset \]

- Consider bets on the events \(A, B \) and \(A \cup B \), where \(A, B \subseteq \Omega, \; A \cap B = \emptyset \)
- The prices you set for them are \(p_A, p_B \) and \(p \), respectively
- Suppose that \(p < p_A + p_B \)
- Then your **opponent would require you to acquire** the following portfolio:
 - sell the bet on \(A \cup B \)
 - and buy the bets on \(A \) and on \(B \)
Axiom c) Additivity:
\[P(A \cup B) = P(A) + P(B), \quad A \cap B = \emptyset \]

- Consider bets on the events \(A, B \) and \(A \cup B \), where \(A, B \subseteq \Omega, \ A \cap B = \emptyset \)
- The prices you set for them are \(p_A, p_B \) and \(p \), respectively
- Suppose that \(p < p_A + p_B \)
- Then your opponent would require you to acquire the following portfolio:
 - sell the bet on \(A \cup B \)
 - and buy the bets on \(A \) and on \(B \)

<table>
<thead>
<tr>
<th>(\Omega) Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
</tr>
<tr>
<td>(B)</td>
</tr>
<tr>
<td>(\neg (A \cup B))</td>
</tr>
</tbody>
</table>
Axiom c) Additivity:
\[P(A \cup B) = P(A) + P(B), \quad A \cap B = \emptyset \]

- Consider bets on the events \(A, B \) and \(A \cup B \), where \(A, B \subseteq \Omega, \ A \cap B = \emptyset \)
- The prices you set for them are \(p_A, p_B \) and \(p \), respectively
- Suppose that \(p < p_A + p_B \)
- Then your opponent would require you to acquire the following portfolio:
 - sell the bet on \(A \cup B \)
 - and buy the bets on \(A \) and on \(B \)

<table>
<thead>
<tr>
<th>Partition of (\Omega)</th>
<th>Your payoff from the portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td></td>
</tr>
<tr>
<td>(B)</td>
<td></td>
</tr>
<tr>
<td>(\neg (A \cup B))</td>
<td></td>
</tr>
</tbody>
</table>
Axiom c) Additivity:
\[P(A \cup B) = P(A) + P(B), \quad A \cap B = \emptyset \]

- Consider bets on the events \(A, B \) and \(A \cup B \), where \(A, B \subseteq \Omega, \ A \cap B = \emptyset \)
- The prices you set for them are \(p_A, p_B \) and \(p \), respectively
- Suppose that \(p < p_A + p_B \)
- Then your \textbf{opponent would require you to acquire} the following portfolio:
 - sell the bet on \(A \cup B \)
 - and buy the bets on \(A \) and on \(B \)

<table>
<thead>
<tr>
<th>Partition of (\Omega)</th>
<th>Your payoff from the portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>((1 - p_A) - p_B + (p - 1) = p - (p_A + p_B) < 0)</td>
</tr>
<tr>
<td>(B)</td>
<td></td>
</tr>
<tr>
<td>(\neg(A \cup B))</td>
<td></td>
</tr>
</tbody>
</table>
Axiom c) Additivity:
\[P(A \cup B) = P(A) + P(B), \quad A \cap B = \emptyset \]

- Consider bets on the events \(A, B \) and \(A \cup B \), where \(A, B \subseteq \Omega \), \(A \cap B = \emptyset \)
- The prices you set for them are \(p_A, p_B \) and \(p \), respectively
- Suppose that \(p < p_A + p_B \)
- Then your opponent would require you to acquire the following portfolio:
 - sell the bet on \(A \cup B \)
 - and buy the bets on \(A \) and on \(B \)

<table>
<thead>
<tr>
<th>Partition of (\Omega)</th>
<th>Your payoff from the portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>((1 - p_A) - p_B + (p - 1) = p - (p_A + p_B) < 0)</td>
</tr>
<tr>
<td>(B)</td>
<td>(-p_A + (1 - p_B) + (p - 1) = p - (p_A + p_B) < 0)</td>
</tr>
<tr>
<td>(\neg(A \cup B))</td>
<td></td>
</tr>
</tbody>
</table>
Axiom c) Additivity:
\[P(A \cup B) = P(A) + P(B), \quad A \cap B = \emptyset \]

- Consider bets on the events \(A, B \) and \(A \cup B \), where \(A, B \subseteq \Omega, \ A \cap B = \emptyset \)
- The prices you set for them are \(p_A, p_B \) and \(p \), respectively
- Suppose that \(p < p_A + p_B \)
- Then your opponent would require you to acquire the following portfolio:
 - sell the bet on \(A \cup B \)
 - and buy the bets on \(A \) and on \(B \)

<table>
<thead>
<tr>
<th>Partition of (\Omega)</th>
<th>Your payoff from the portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>((1 - p_A) - p_B + (p - 1) = p - (p_A + p_B) < 0)</td>
</tr>
<tr>
<td>(B)</td>
<td>(-p_A + (1 - p_B) + (p - 1) = p - (p_A + p_B) < 0)</td>
</tr>
<tr>
<td>(- (A \cup B))</td>
<td>(p - p_A - p_B < 0)</td>
</tr>
</tbody>
</table>
Axiom d): Conditional probability \(P(A|B) = \frac{P(A \cap B)}{P(B)} \)

- Consider bets on the events \(A \cap B, B \) and \(A|B \), where \(A, B \subseteq \Omega \).
Axiom d): Conditional probability $P(A|B) = \frac{P(A \cap B)}{P(B)}$

- Consider bets on the events $A \cap B$, B and $A|B$, where $A, B \subseteq \Omega$.
- The prices you set for them are p_{AB}, p_B and p, respectively

\[\text{Partition of } \Omega\]
Your payoff from the portfolio
\[A \cap B\]
\[\text{manifested as:} \]
\[\left(1 - p_{AB}\right) + \left(p_{AB} - 1\right) + p\left(1 - p_B\right) = p_{AB} - pp_B < 0\]

\[\neg A \cap B\]
\[\text{manifested as:} \]
\[\left(-p_{AB} + p\right) - p_{AB} + p_{AB} - pp_B\]
\[= p_{AB} - pp_B < 0\]

\[\neg B\]
\[\text{manifested as:} \]
\[\left(-p_{AB} + p\right) - p_{AB} - p_{AB} + pp_B\]
\[= p_{AB} - pp_B < 0\]
Axiom d): Conditional probability $P(A|B) = \frac{P(A \cap B)}{P(B)}$

- Consider bets on the events $A \cap B$, B and $A|B$, where $A, B \subseteq \Omega$.
- The prices you set for them are p_{AB}, p_B and p, respectively.
- Suppose that $p > \frac{p_{AB}}{p_B}$.
Axiom d): Conditional probability \(P(A|B) = \frac{P(A \cap B)}{P(B)} \)

- Consider bets on the events \(A \cap B, B \) and \(A|B \), where \(A, B \subseteq \Omega \).
- The prices you set for them are \(p_{AB}, p_B \) and \(p \), respectively.
- Suppose that \(p > \frac{p_{AB}}{p_B} \)
- Then your opponent would require you to acquire the following portfolio:
Axiom d): Conditional probability \(P(A|B) = \frac{P(A \cap B)}{P(B)} \)

- Consider bets on the events \(A \cap B, B \) and \(A|B \), where \(A, B \subseteq \Omega \).
- The prices you set for them are \(p_{AB}, p_B \) and \(p \), respectively.
- Suppose that \(p > \frac{p_{AB}}{p_B} \).
- Then your opponent would require you to acquire the following portfolio:
 - buy the bet on \(A|B \) and \(p \) units of the bet on \(B \).
Axiom d): Conditional probability $P(A|B) = \frac{P(A \cap B)}{P(B)}$

- Consider bets on the events $A \cap B$, B and $A|B$, where $A, B \subseteq \Omega$.
- The prices you set for them are p_{AB}, p_B and p, respectively.
- Suppose that $p > \frac{p_{AB}}{p_B}$
- Then your opponent would require you to acquire the following portfolio:
 - buy the bet on $A|B$ and p units of the bet on B
 - sell the bet on $A \cap B$
Axiom d): Conditional probability \(P(A|B) = \frac{P(A \cap B)}{P(B)} \)

- Consider bets on the events \(A \cap B, B \) and \(A|B \), where \(A, B \subseteq \Omega \).
- The prices you set for them are \(p_{AB}, p_B \) and \(p \), respectively.
- Suppose that \(p > \frac{p_{AB}}{p_B} \).
- Then your opponent would require you to acquire the following portfolio:
 - buy the bet on \(A|B \) and \(p \) units of the bet on \(B \)
 - sell the bet on \(A \cap B \)

<table>
<thead>
<tr>
<th>Partition of (\Omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \cap B)</td>
</tr>
<tr>
<td>(\neg A \cap B)</td>
</tr>
<tr>
<td>(\neg B)</td>
</tr>
</tbody>
</table>
Axiom d): Conditional probability $P(A|B) = \frac{P(A \cap B)}{P(B)}$

- Consider bets on the events $A \cap B$, B and $A|B$, where $A, B \subseteq \Omega$.
- The prices you set for them are p_{AB}, p_B and p, respectively.
- Suppose that $p > \frac{p_{AB}}{p_B}$
- Then your opponent would require you to acquire the following portfolio:
 - buy the bet on $A|B$ and p units of the bet on B
 - sell the bet on $A \cap B$

<table>
<thead>
<tr>
<th>Partition of Ω</th>
<th>Your payoff from the portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \cap B$</td>
<td></td>
</tr>
<tr>
<td>$\neg A \cap B$</td>
<td></td>
</tr>
<tr>
<td>$\neg B$</td>
<td></td>
</tr>
</tbody>
</table>
Axiom d): Conditional probability $P(A|B) = \frac{P(A \cap B)}{P(B)}$

- Consider bets on the events $A \cap B$, B and $A|B$, where $A, B \subseteq \Omega$.
- The prices you set for them are p_{AB}, p_B and p, respectively.
- Suppose that $p > \frac{p_{AB}}{p_B}$
- Then your opponent would require you to acquire the following portfolio:
 - buy the bet on $A|B$ and p units of the bet on B
 - sell the bet on $A \cap B$

<table>
<thead>
<tr>
<th>Partition of Ω</th>
<th>Your payoff from the portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \cap B$</td>
<td>$(1 - p) + (p_{AB} - 1) + p(1 - p_B) = p_{AB} - pp_B < 0$</td>
</tr>
<tr>
<td>$\neg A \cap B$</td>
<td></td>
</tr>
<tr>
<td>$\neg B$</td>
<td></td>
</tr>
</tbody>
</table>
Axiom d): Conditional probability $P(A|B) = \frac{P(A \cap B)}{P(B)}$

- Consider bets on the events $A \cap B$, B and $A|B$, where $A, B \subseteq \Omega$.
- The prices you set for them are p_{AB}, p_B and p, respectively.
- Suppose that $p > \frac{p_{AB}}{p_B}$.
- Then your opponent would require you to acquire the following portfolio:
 - buy the bet on $A|B$ and p units of the bet on B
 - sell the bet on $A \cap B$

<table>
<thead>
<tr>
<th>Partition of Ω</th>
<th>Your payoff from the portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \cap B$</td>
<td>$(1 - p) + (p_{AB} - 1) + p(1 - p_B) = p_{AB} - pp_B < 0$</td>
</tr>
<tr>
<td>$\neg A \cap B$</td>
<td>$- p + p_{AB} + p(1 - p_B) = p_{AB} - pp_B < 0$</td>
</tr>
<tr>
<td>$\neg B$</td>
<td></td>
</tr>
</tbody>
</table>
Axiom d): Conditional probability $P(A|B) = \frac{P(A \cap B)}{P(B)}$

- Consider bets on the events $A \cap B$, B and $A|B$, where $A, B \subseteq \Omega$.
- The prices you set for them are p_{AB}, p_B and p, respectively.
- Suppose that $p > \frac{p_{AB}}{p_B}$.
- Then your opponent would require you to acquire the following portfolio:
 - buy the bet on $A|B$ and p units of the bet on B
 - sell the bet on $A \cap B$

<table>
<thead>
<tr>
<th>Partition of Ω</th>
<th>Your payoff from the portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \cap B$</td>
<td>$(1 - p) + (p_{AB} - 1) + p(1 - p_B) = p_{AB} - pp_B < 0$</td>
</tr>
<tr>
<td>$\neg A \cap B$</td>
<td>$-p + p_{AB} + p(1 - p_B) = p_{AB} - pp_B < 0$</td>
</tr>
<tr>
<td>$\neg B$</td>
<td>$-p + p_{AB} - pp_B) = p_{AB} - pp_B < 0$</td>
</tr>
</tbody>
</table>
Arbitrage and transitivity

- Intransitivity
 - Mr. X has the following preferences: $x \succ y \succ z \succ x$
Arbitrage and transitivity

- Intransitivity
 - Mr. X has the following preferences: \(x \succ y \succ z \succ x \)
 - They violate transitivity.
Arbitrage and transitivity

- Intransitivity
 - Mr. X has the following preferences: $x \succ y \succ z \succ x$
 - They violate transitivity.
 - I propose him the following deal:
Arbitrage and transitivity

- Intransitivity
 - Mr. X has the following preferences: $x \succ y \succ z \succ x$
 - They violate transitivity.
 - I propose him the following deal:
 1. Take x
Arbitrage and transitivity

- **Intransitivity**
 - Mr. X has the following preferences: $x > y > z > x$
 - They violate transitivity.
 - I propose him the following deal:
 1. Take x
 2. Exchange it for z and pay me small amount $\epsilon_1 > 0$
 3. Exchange it for y and pay me small amount $\epsilon_2 > 0$
 4. Exchange it for x and pay me small amount $\epsilon_3 > 0$
 5. Repeat from step 2

FREE LUNCH!!
Arbitrage and transitivity

- Intransitivity
 - Mr. X has the following preferences: $x \succ y \succ z \succ x$
 - They violate transitivity.
 - I propose him the following deal:
 1. Take x
 2. Exchange it for z and pay me small amount $\epsilon_1 > 0$
 3. Exchange it for y and pay me small amount $\epsilon_2 > 0$
 4. Exchange it for x and pay me small amount $\epsilon_3 > 0$
 5. Repeat from step 2

FREE LUNCH!!
Arbitrage and transitivity

▶ Intransitivity
▶ Mr. X has the following preferences: \(x \succ y \succ z \succ x \)
▶ They violate transitivity.
▶ I propose him the following deal:
 1. Take \(x \)
 2. Exchange it for \(z \) and pay me small amount \(\epsilon_1 > 0 \)
 3. Exchange it for \(y \) and pay me small amount \(\epsilon_2 > 0 \)
 4. Exchange it for \(x \) and pay me small amount \(\epsilon_3 > 0 \)

FREE LUNCH!!
Arbitrage and transitivity

- **Intransitivity**
 - Mr. X has the following preferences: \(x \succ y \succ z \succ x \)
 - They violate transitivity.
 - I propose him the following deal:
 1. Take \(x \)
 2. Exchange it for \(z \) and pay me small amount \(\epsilon_1 > 0 \)
 3. Exchange it for \(y \) and pay me small amount \(\epsilon_2 > 0 \)
 4. Exchange it for \(x \) and pay me small amount \(\epsilon_3 > 0 \)
 5. Repeat from step 2

FREE LUNCH!!
Arbitrage and transitivity

- **Intransitivity**
 - Mr. X has the following preferences: \(x \succ y \succ z \succ x \)
 - They violate transitivity.
 - I propose him the following deal:
 1. Take \(x \)
 2. Exchange it for \(z \) and pay me small amount \(\epsilon_1 > 0 \)
 3. Exchange it for \(y \) and pay me small amount \(\epsilon_2 > 0 \)
 4. Exchange it for \(x \) and pay me small amount \(\epsilon_3 > 0 \)
 5. Repeat from step 2

FREE LUNCH!!!
Arbitrage and independence

▶ Violation of independence
 ▶ Mr. X has the following preferences: \(L_1 > L_2 \) and
 \((L_1, \alpha; L_3, 1 - \alpha) < (L_2, \alpha; L_3, 1 - \alpha) \).

\[\text{̄} \text{A} \text{s} \text{s} \text{u} \text{m} \text{e} \text{m} \text{e} \text{t} \text{t} \text{i} \text{t} \text{i} \text{o} \text{n} \text{a} \text{t} \text{i} \text{t} \text{y} \text{ } \text{t} \text{h} \text{a} \text{t} \text{ } \text{e} \text{v} \text{e} \text{n} \text{t} \text{ } \text{E} \text{ } \text{o} \text{c} \text{c} \text{u} \text{r} \text{s} \text{ } \text{w} \text{i} \text{t} \text{h} \text{ } \text{p} \text{r} \text{o} \text{b} \text{a} \text{b} \text{i} \text{l} \text{i} \text{t} \text{i} \text{y} \text{ } \alpha. \]
Arbitrage and independence

▶ Violation of independence
 ▶ Mr. X has the following preferences: $L_1 > L_2$ and
 $\langle L_1, \alpha; L_3, 1 - \alpha \rangle < \langle L_2, \alpha; L_3, 1 - \alpha \rangle$.
 ▶ They violate IIR.

\(^1\text{Assume it is common knowledge that event } E \text{ occurs with probability } \alpha.\)
Arbitrage and independence

- Violation of independence
 - Mr. X has the following preferences: $L_1 > L_2$ and $(L_1, \alpha; L_3, 1 - \alpha) < (L_2, \alpha; L_3, 1 - \alpha)$.
 - They violate IIR.
 - I propose him the following deal:
 1. Take $(L_1, \alpha; L_3, 1 - \alpha)$
 2. Exchange for $(L_2, \alpha; L_3, 1 - \alpha)$ and pay me $\epsilon_1 > 0$
 3. Agree that when event E occurs, exchange L_2 with L_1 and pay me $\epsilon_2 > 0$
 4. Repeat from step 2

Assume it is common knowledge that event E occurs with probability α.

Arbitrage and independence

▶ Violation of independence
 ▶ Mr. X has the following preferences: $L_1 > L_2$ and $(L_1, \alpha; L_3, 1 - \alpha) < (L_2, \alpha; L_3, 1 - \alpha)$.
 ▶ They violate IIR.
 ▶ I propose him the following deal:
 1. Take $(L_1, \alpha; L_3, 1 - \alpha)$
 2. Exchange for $(L_2, \alpha; L_3, 1 - \alpha)$ and pay me $\epsilon_1 > 0$

\[1\text{Assume it is common knowledge that event } E \text{ occurs with probability } \alpha.\]
Arbitrage and independence

▶ Violation of independence
 ▶ Mr. X has the following preferences: $L_1 > L_2$ and $(L_1, \alpha; L_3, 1 - \alpha) < (L_2, \alpha; L_3, 1 - \alpha)$.
 ▶ They violate IIR.
 ▶ I propose him the following deal:
 1. Take $(L_1, \alpha; L_3, 1 - \alpha)$
 2. Exchange for $(L_2, \alpha; L_3, 1 - \alpha)$ and pay me $\epsilon_1 > 0$
 3. Agree that when event E occurs\(^1\), exchange L_2 with L_1 and pay me $\epsilon_2 > 0$

\(^1\)Assume it is common knowledge that event E occurs with probability α.
Arbitrage and independence

▶ Violation of independence
 ▶ Mr. X has the following preferences: \(L_1 > L_2 \) and \((L_1, \alpha; L_3, 1 - \alpha) < (L_2, \alpha; L_3, 1 - \alpha)\).
 ▶ They violate IIR.
 ▶ I propose him the following deal:
 1. Take \((L_1, \alpha; L_3, 1 - \alpha)\)
 2. Exchange for \((L_2, \alpha; L_3, 1 - \alpha)\) and pay me \(\epsilon_1 > 0\)
 3. Agree that when event \(E\) occurs\(^1\), exchange \(L_2\) with \(L_1\) and pay me \(\epsilon_2 > 0\)
 4. Repeat from step 2

\(^1\text{Assume it is common knowledge that event } E \text{ occurs with probability } \alpha.\)
Arbitrage and independence

▶ Violation of independence
 ▶ Mr. X has the following preferences: $L_1 > L_2$ and $(L_1, \alpha; L_3, 1-\alpha) < (L_2, \alpha; L_3, 1-\alpha)$.
 ▶ They violate IIR.
 ▶ I propose him the following deal:
 1. Take $(L_1, \alpha; L_3, 1-\alpha)$
 2. Exchange for $(L_2, \alpha; L_3, 1-\alpha)$ and pay me $\epsilon_1 > 0$
 3. Agree that when event E occurs\(^1\), exchange L_2 with L_1
 and pay me $\epsilon_2 > 0$
 4. Repeat from step 2

FREE LUNCH!!!
We have shown that

- if you violate **Expected Utility** (subjective or objective) axioms,
We have shown that

- if you violate Expected Utility (subjective or objective) axioms,
- then you are vulnerable to a Dutch book

The converse statement is also true, but one must be careful as to how we interpret expected utility.
We have shown that

- if you violate Expected Utility (subjective or objective) axioms,
- then you are vulnerable to a Dutch book

What we miss is the converse statement:
- If you are not vulnerable to a Dutch book
We have shown that

- if you violate Expected Utility (subjective or objective) axioms,
- then you are vulnerable to a Dutch book

What we miss is the converse statement:

- If you are not vulnerable to a Dutch book
- Then you have to satisfy Expected Utility axioms
We have shown that
- if you violate Expected Utility (subjective or objective) axioms,
- then you are vulnerable to a Dutch book

What we miss is the converse statement:
- If you are not vulnerable to a Dutch book
- Then you have to satisfy Expected Utility axioms

The converse statement is also true,
We have shown that

▶ if you violate Expected Utility (subjective or objective) axioms,
▶ then you are vulnerable to a Dutch book

What we miss is the converse statement:

▶ If you are not vulnerable to a Dutch book
▶ Then you have to satisfy Expected Utility axioms

The converse statement is also true, but one must be careful as to how we interpret expected utility.
Dual independence and arbitrage

Let $x \equiv (x, p)$ and $y \equiv (y, q)$ be two lotteries.
Dual independence and arbitrage

- Let $x \equiv (x, p)$ and $y \equiv (y, q)$ be two lotteries.
- Two ways of mixing two lotteries.
Dual independence and arbitrage

- Let $x \equiv (x, p)$ and $y \equiv (y, q)$ be two lotteries.
- Two ways of mixing two lotteries.
 - with probability α play lottery x and with probability $1 - \alpha$ play lottery y, denoted by $\alpha x \oplus (1 - \alpha)y$.

Yaari (1985) - DB no.4: Suppose that an agent exhibits the following preference pattern:

\[
x \succ (y, q) \text{ and } y \succ \frac{x}{2} \succ \frac{y}{2}
\]
Dual independence and arbitrage

Let $x \equiv (x, p)$ and $y \equiv (y, q)$ be two lotteries.

Two ways of mixing two lotteries.

- with probability α play lottery x and with probability $1 - \alpha$ play lottery y, denoted by $\alpha x \oplus (1 - \alpha)y$.
- an agent owns α shares of lottery x and $1 - \alpha$ shares of lottery y denoted by $\alpha x + (1 - \alpha)y$.

Yaari (1985) - DB no.4: suppose that an agent exhibits the following preference pattern:

$$(x, p) \succ (y, q) \text{ and } (y, 2q) \succ (x, 2p) \quad (1)$$
Dual independence and arbitrage

- Let \(x \equiv (x, p) \) and \(y \equiv (y, q) \) be two lotteries.
- Two ways of mixing two lotteries.
 - with probability \(\alpha \) play lottery \(x \) and with probability \(1 - \alpha \) play lottery \(y \), denoted by \(\alpha x \oplus (1 - \alpha)y \).
 - an agent owns \(\alpha \) shares of lottery \(x \) and \(1 - \alpha \) shares of lottery \(y \) denoted by \(\alpha x + (1 - \alpha)y \).
 - Notice that we need the joint distribution of \(x \) and \(y \) apart from the marginals.

Yaari (1985) - DB no.4: Suppose that an agent exhibits the following preference pattern:

\[
(x, p) \succ (y, q) \quad \text{and} \quad \left(\frac{y}{2}, q\right) \succ \left(\frac{x}{2}, p\right)
\]
Dual independence and arbitrage

Let \(x \equiv (x, p) \) and \(y \equiv (y, q) \) be two lotteries.

Two ways of mixing two lotteries.

- with probability \(\alpha \) play lottery \(x \) and with probability \(1 - \alpha \) play lottery \(y \), denoted by \(\alpha x \oplus (1 - \alpha)y \).
- an agent owns \(\alpha \) shares of lottery \(x \) and \(1 - \alpha \) shares of lottery \(y \) denoted by \(\alpha x + (1 - \alpha)y \).

Notice that we need the joint distribution of \(x \) and \(y \) apart from the marginals.

Yaari (1985) - DB no.4: suppose that an agent exhibits the following preference pattern:

\[
(x, p) > (y, q) \quad \text{and} \quad (y/2, q) > (x/2, p) \quad (1)
\]
The above pattern is in violation with the dual independence axiom.
The above pattern is in violation with the **dual independence axiom**.

\[x > y \text{ and } \alpha x + (1 - \alpha)z > \alpha y + (1 - \alpha)z, \quad \forall \alpha \in (0, 1) \]
The above pattern is in violation with the **dual independence axiom**.

\[x > y \text{ and } \alpha x + (1 - \alpha)z > \alpha y + (1 - \alpha)z, \quad \forall \alpha \in (0, 1) \quad (2) \]

Note that this preference pattern is possible under expected utility.
The above pattern is in violation with the **dual independence axiom**.

\[x > y \text{ and } \alpha x + (1 - \alpha)z > \alpha y + (1 - \alpha)z, \quad \forall \alpha \in (0, 1) \quad (2) \]

Note that this preference pattern is possible under expected utility.

According to Yaari (1985), a person who exhibits such preference pattern can be approached with the following sequence of trades:
The above pattern is in violation with the dual independence axiom.

\[x > y \text{ and } \alpha x + (1 - \alpha)z > \alpha y + (1 - \alpha)z, \quad \forall \alpha \in (0, 1) \] (2)

Note that this preference pattern is possible under expected utility.

According to Yaari (1985), a person who exhibits such preference pattern can be approached with the following sequence of trades:

1. I offer you both \((x/2, p)\) and \((y/2, q)\), free of charge
The above pattern is in violation with the dual independence axiom.

\[x \succ y \text{ and } \alpha x + (1 - \alpha)z \succ \alpha y + (1 - \alpha)z, \quad \forall \alpha \in (0, 1) \quad (2) \]

Note that this preference pattern is possible under expected utility.

According to Yaari (1985), a person who exhibits such preference pattern can be approached with the following sequence of trades:

1. I offer you both \((x/2, p) \) and \((y/2, q) \), free of charge
2. For a small positive fee I allow you to trade \((x/2, p) \) for another \((y/2, q) \)
The above pattern is in violation with the dual independence axiom.

\[x \succ y \quad \text{and} \quad \alpha x + (1 - \alpha)z \succ \alpha y + (1 - \alpha)z, \quad \forall \alpha \in (0, 1) \quad (2) \]

Note that this preference pattern is possible under expected utility.

According to Yaari (1985), a person who exhibits such preference pattern can be approached with the following sequence of trades:

1. I offer you both \((x/2, p)\) and \((y/2, q)\), free of charge
2. For a small positive fee I allow you to trade \((x/2, p)\) for another \((y/2, q)\)
3. For a small positive fee I allow you to trade \((y, q)\) for \((x, p)\)
The above pattern is in violation with the dual independence axiom.

\[x > y \quad \text{and} \quad \alpha x + (1 - \alpha)z > \alpha y + (1 - \alpha)z, \quad \forall \alpha \in (0, 1) \] (2)

Note that this preference pattern is possible under expected utility.

According to Yaari (1985), a person who exhibits such preference pattern can be approached with the following sequence of trades:

1. I offer you both \((x/2, p) \) and \((y/2, q) \), free of charge
2. For a small positive fee I allow you to trade \((x/2, p) \) for another \((y/2, q) \)
3. For a small positive fee I allow you to trade \((y, q) \) for \((x, p) \)
4. For a small positive fee I allow you to trade one of \((x/2, p) \) for \((y/2, q) \)
The above pattern is in violation with the **dual independence axiom**.

\[
x \succ y \text{ and } \alpha x + (1 - \alpha)z \succ \alpha y + (1 - \alpha)z, \quad \forall \alpha \in (0, 1) \tag{2}
\]

Note that this preference pattern is possible under expected utility.

According to Yaari (1985), a person who exhibits such preference pattern can be approached with the following sequence of trades:

1. I offer you both \((x/2, p)\) and \((y/2, q)\), free of charge
2. For a small positive fee I allow you to trade \((x/2, p)\) for another \((y/2, q)\)
3. For a small positive fee I allow you to trade \((y, q)\) for \((x, p)\)
4. For a small positive fee I allow you to trade one of \((x/2, p)\) for \((y/2, q)\)

Is it really so?