Preference relation, choice rule and utility function
• **Individual decision making**
 – **under Certainty**
 • Revealed preference and **ordinal** utility theory

If \(u() \) is a utility function, then any strictly increasing transformation \(g \circ u() \) is a utility function representing the same preferences.

• **Individual decision making**
 – **under Certainty**
 • Revealed preference and utility theory
• Individual decision making
 – under Certainty
 • Choice functions

Weak axiom of revealed preference (WARP)

NOT ALLOWED

You go to a restaurant in while you are on vacation in Tuscany and you are given the following menu:
• bistecca
• pollo

The cook announces that he can also serve
• trippa alla fiorentina
Preference relations

• Mathematically – binary relations in the set of decision alternatives:
 – X – decision alternatives
 – X^2 – all pairs of decision alternatives
 – $R \subseteq X^2$ – binary relation in X, selected subset of ordered pairs of elements of X
 – if x is in relation R with y, then we write xRy or $(x,y) \in R$

• Examples of relations:
 – ”Being a parent of” is a binary relation on a set of human beings
 – ”Being a hat” is a binary relation on a set of objects
 – ”$x+y=z$” is 3-ary relation on the set of numbers
 – ”x is better than y more than x’ is better than y’” is a 4-ary relation on the set of alternatives.
Logical preliminary

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>~p</th>
<th>~q</th>
<th>p \Rightarrow q <=> ~p \lor q <=> ~q \Rightarrow ~p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\[p \lor q \equiv (p \land q) \land \neg p \land \neg q \]

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>~p</th>
<th>~q</th>
<th>p \lor q</th>
<th>~q \land ~p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Binary relations – basic properties

- complete: \(xRy \) or \(yRx \)
- reflexive: \(xRx \) (\(\forall x \))
- irreflexive: not \(xRx \) (\(\forall x \))
- transitive: if \(xRy \) and \(yRz \), then \(xRz \)
- symmetric: if \(xRy \), then \(yRx \)
- asymmetric: if \(xRy \), then not \(yRx \)
- antisymmetric: if \(xRy \) and \(yRx \), then \(x=y \)
- negatively transitive: if not \(xRy \) and not \(yRz \), then not \(xRz \)
 - equivalent to: \(xRz \) implies \(xRy \) or \(yRz \)
- acyclic: if \(x_1Rx_2, x_2Rx_3, \ldots, x_{n-1}Rx_n \) imply \(x_1 \neq x_n \)
Exercise – check the properties of the following relations

- \(R_1 \): (among people), to have the same colour of the eyes
- \(R_2 \): (among people), to know each other
- \(R_3 \): (in the family), to be an ancestor of
- \(R_4 \): (among real numbers), not to have the same value
- \(R_5 \): (among words in English), to be a synonym
- \(R_6 \): (among countries), to be at least as good in a rank-table of summer olympics

<table>
<thead>
<tr>
<th></th>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(R_3)</th>
<th>(R_4)</th>
<th>(R_5)</th>
<th>(R_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reflexive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>irreflexive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>transitive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>symmetric</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>asymmetric</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>negatively transitive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 questionnaires

\(P \) (for all distinct \(x \) and \(y \) in \(X \)):
How do you compare \(x \) and \(y \)? Tick one and only one of the following three options:
- I prefer \(x \) to \(y \) (this answer is denoted as \(x \succ y \) or \(xP y \)).
- I prefer \(y \) to \(x \) (this answer is denoted by \(y \succ x \), or \(y P x \)).
- Neither of the first two. I am indifferent (this answer is denoted by \(x \sim y \) or \(x I y \)).

\(R \) (for all \(x, y \in X \), not necessarily distinct):
Is \(x \) at least as preferred as \(y \)? Tick one and only one of the following two options:
- Yes
- No
2 questionnaires

We exclude right away:

- A lack of ability to compare (I have no opinion, they are incomparable)
- A dependence on other factors (depends on what my parents think)
- Intensity of preferences (I somewhat prefer x, I love x and hate y)

Rational preference relation

- P is a (rational) strict preference relation in X, if it is:
 - asymmetric
 - negatively transitive
 - acyclic
 - transitive
 - ...

- Q is a (rational) weak preference relation in X, if it is:
 - complete
 - transitive
 - acyclic
 - reflexive
 - ...

- Completeness implies reflexivity (be sure that you understand)
- Asymmetry + negative transititivity implies transitivity (prove)
- Etc.
Relationship between strict and weak preferences

Let R be a weak preference relation (transitive, complete)
- R generates strict preference relation – P:
 - xPy, iff xRy and not yRx
- R generates indifference relation – I:
 - xIy, iff xRy and yRx

Let P be a strict preference relation (asymmetric and negatively transitive)
- P generates weak preference relation – R:
 - xRy, iff not $y Px$
- P generates indifference relation – I:
 - xIy, iff not xPy and not yPx

An example $[X=\{a,b,c,d\}]$

- $R=\{(a,a), (a,b), (a,c), (a,d), (b,a), (b,b), (b,c), (b,d), (c,c), (c,d), (d,d)\}$ generates:
 - $P=\{(a,c), (a,d), (b,c), (b,d), (c,d)\}$
 - $I=\{(a,a), (a,b), (a,c), (b,b), (c,c), (d,d)\}$

And the other way around:
- $P=\{(a,c), (a,d), (b,c), (b,d), (c,d)\}$ generates:
 - $R=\{(a,a), (a,b), (a,c), (a,d), (b,a), (b,b), (b,c), (b,d), (c,c), (c,d), (d,d)\}$
 - $I=\{(a,a), (a,b), (b,b), (c,c), (d,d)\}$
- Observe that $R=P \cup I$
Exercise

- $X = \{a, b, c, d\}$
- $P = \{(a, d), (c, d), (a, b), (c, b)\}$

- Find R and I

P vs R ($xPy \iff xRy \land \sim yRx$)

- R is complete iff P is asymmetric

- R is transitive iff P is negatively transitive
Properties of I

- I is an equivalence relation iff it is:
 - reflexive
 - transitive
 - symmetric

- Can we start with I as a primitive?
 - reflexive
 - symmetric
 - transitive
- No – we wouldn’t be able to order the abstraction classes

Proof of the properties of I from the properties of R (xly ⇔ xRy ∧ yRx)

- reflexive (xlx)
 - obvious – using reflexivity of R we get xRx

- transitive (xly ∧ ylz ⇒ xlz)
 - predecessor means that xRy ∧ yRx ∧ yRz ∧ zRy
 - using transitivity we get xRz ∧ zRx, QED

- symmetric (xly ⇒ ylx)
 - predecessor means that xRy ∧ yRx, QED
Another definition of rational preferences

• Is it enough to use a relation P that is:
 – asymmetric
 – acyclic (not necessarily negatively transitive)

• No – let’s see an example

P from the previous slide – an example

• Mr X got ill and for years to come will have to take pills twice a day in an interval of exactly 12 hours. He can choose the time however.

• All the decision alternatives are represented by a circle with a circumference 12 (a clock). Let’s denote the alternatives by the length of an arc from a given point (midnight/noon).

• Mr X has very peculiar preferences – he prefers y to x, if y=x+π, otherwise he doesn’t care

• Thus yPx, if y lies on the circle π units farther (clockwise) than x
Exercise

• What properties does P have?
 – Asymmetry (YES)
 – negative transitivity (NO)
 – Transitivity (NO)
 – Acyclicity (YES)

• P generates „weird” preferences:
 – Not transitive
 • 1+2π better than 1+π,
 • 1+π better than 1,
 • 1+2π equally good as 1
 – Not negatively transitive
 • 1 equally good as 1+π/2,
 • 1+π/2 equally good as 1+π,
 • 1 worse than 1+π

Another definition of rational preferences

• What if we take P?
 – asymmetric
 – transitive (not necessarily negatively transitive)
 – thus acyclic

• First let’s try to find an example
• Then let’s think about such preferences
Asymmetric, transitive, not negatively transitive relation – intuition

- $X = \{R_+\}$, $xPy \iff x > y + 5$ (I want more, but I am insensitive to small changes)

- Properties of P:
 - asymmetric – obviously
 - transitive – obviously
 - negatively transitive?
 - 11 P 5, but
 - neither 11 P 8, nor 8 P 5

- Thus I is not transitive: 11 I 8 and 8 I 5, but not 11 I 5
Properties of preferences – a summary

- **P („better than“)** – asymmetric, negatively transitive
- **P („better than“)** – asymmetric, transitive
- **P („better than“)** – asymmetric, acyclic
- **R („at least as good as“)** – transitive, complete

Colours, insensitivity to small changes

eg. Mr X

Choice functions – a formal definition

- **Notation:**
 - \(X \) set of decision alternatives
 - \(B \subseteq 2^X, \emptyset \notin B \) available menus (non-empty subsets of \(X \))
 - \(C : B \to B \) choice function, working for every menu

- **(Technical) properties:**
 - \(C(B) \neq \emptyset \) always a choice
 - \(C(B) \subseteq B \) out of a menu

- If \(C(B) \) contains a single element \(\Rightarrow \) this is the choice
- If more elements \(\Rightarrow \) these are possible choices (not simultaneously, the decision maker picks one in the way which is not described here)
Preferences once more (this time strict)

- Let X represent some set of objects
- Often in economics $X \subseteq \mathbb{R}^K$ is a space of consumption bundles
 - E.g. 3 commodities: beer, wine and whisky
 - $x = (x_1, x_2, x_3)$ (x_1 cans of beer, x_2 bottles of wine, x_3 shots of whisky)
- We present the consumer pairs x and y and ask how they compare
- Answer x is better than y is written $x \succ y$ and is read x is strictly preferred to y
- For each pair x and y there are 4 possible answers:
 - x is better than y, but not the reverse
 - y is better than x, but not the reverse
 - neither seems better to her
 - x is better than y, and y is better than x
Assumptions on strict preferences

- We would like to exclude the fourth possibility right away

Assumption 1: Preferences are asymmetric. There is no pair x and y from X such that $x \succ y$ and $y \succ x$

- Possible objections:
 - What if decisions are made in different time periods?
 - change of tastes
 - addictive behavior (1 cigarette \succ 0 cigarettes \succ 20 cigarettes changed to 20 cigarettes \succ 1 cigarette \succ 0 cigarettes)
 - dual-self model
 - Dependence on framing
 - E.g. Asian disease
Assumptions on strict preferences

Assumption 2: Preferences are **negatively transitive**: If \(x > y \), then for any third element \(z \), either \(x > z \), or \(z > y \), or both.

- **Possible objections:**
 - Suppose objects in \(X \) are bundles of cans of beer and bottles of wine \(x = (x_1, x_2) \)
 - No problem comparing \(x = (21, 9) \) with \(y = (20, 8) \)
 - Suppose \(z = (40, 2) \). Negative transitivity demands that either \((21, 9) > (40, 2) \), or \((40, 2) > (20, 8) \), or both.
 - The consumer may say that comparing \((40, 2) \) with either \((20, 8) \) or \((21, 9) \) is too hard.
 - Negative transitivity rules this out.
Weak preferences and indifference induced from strict preferences

- Suppose our consumer’s preferences are given by the relation $>$.

Definition: For x and y in X,

- write $x \succeq y$, read "x is weakly preferred to y", if it is not the case that $y > x$.
- write $x \sim y$, read "x is indifferent to y", if it is not the case that either $x > y$ or $y > x$.

- Problem with noncomparability: if the consumer is unable to compare $(40, 2)$ with either $(20, 8)$ or $(21, 9)$, it doesn’t mean she is indifferent between them.
Proposition: If \succ is asymmetric and negatively transitive, then:

- weak preference \succeq is complete and transitive
- indifference \sim is reflexive, symmetric and transitive
- Additionally, if $w \sim x, x \succ y,$ and $y \sim z,$ then $w \succ y$ and $x \succ z.$

The first two were proved previously. The third may be proved at home.
Proposition: If \succ is asymmetric and negatively transitive, then \succ is irreflexive, transitive and acyclic.

Proof.

- Irreflexive by asymmetry
- Transitivity:
 - Suppose that $x \succ y$ and $y \succ z$
 - By negative transitivity and $x \succ y$, either $x \succ z$ or $z \succ y$
 - Since $y \succ z$, asymmetry forbids $z \succ y$. Hence $x \succ z$
- Acyclicity:
 - If $x_1 \succ x_2, x_2 \succ x_3, \ldots, x_{n-1} \succ x_n$, then transitivity implies $x_1 \succ x_n$
 - Asymmetry (or irreflexivity) implies $x_1 \neq x_n$

Quod Erat Demonstrandum (QED)
Properties of preferences – a summary

P ("better than") – asymmetric, negatively transitive

R ("at least as good as") – transitive, complete

colours, insensitivity to small changes

e.g. Mr X

P ("better than") – asymmetric, transitive

P ("better than") – asymmetric, acyclic

Choice functions – a formal definition

• Notation:

 \[
 X \quad \text{set of decision alternatives}
 \]

 \[
 B \subset 2^X, \emptyset \not\in B \quad \text{available menus (non-empty subsets of } X)\]

 \[
 C : B \rightarrow B \quad \text{choice function, working for every menu}\]

• (Technical) properties:

 \[
 C(B) \neq \emptyset \quad \text{always a choice}\]

 \[
 C(B) \subset B \quad \text{out of a menu}\]

• If \(C(B) \) contains a single element \(\rightarrow \) this is the choice

• If more elements \(\rightarrow \) these are possible choices (not simultaneously, the decision maker picks one in the way which is not described here)
An exercise

- Let $X=\{a,b,c\}$, $\mathcal{P}(X)=2^X$

- Write down the following choice functions:
 - C_1: always a (if possible), if not – it doesn’t matter
 - C_2: always the first one in the alphabetical order
 - C_3: whatever but not the last one in the alphabetical order (unless there is just one alternative available)
 - C_4: second first alphabetically (unless there is just one alternative)
 - C_5: disregard c (if technically it is possible), and if you do disregard c, also disregard b (if technically possible)

The solution

<table>
<thead>
<tr>
<th>B</th>
<th>$C_1(B)$</th>
<th>$C_2(B)$</th>
<th>$C_3(B)$</th>
<th>$C_4(B)$</th>
<th>$C_5(B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>{a}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{b}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{c}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{a,b}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{a,c}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{b,c}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{a,b,c}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Choice rule induced by preference relation

- How do we relate preference relation with choice behavior?

Definition: Given a preference relation \succ on a set of objects X and a nonempty subset A of X, the set of acceptable alternatives from A according to \succ is defined to be:

$$c(A; \succ) = \{x \in A : \text{There is no } y \in A \text{ such that } y \succ x\}$$

Several things to note:

- $c(A; \succ)$ by definition subset of A
- $c(A; \succ)$ may contain more than one element (anything will do)
Properties of such choice rule

- In some cases, $c(A; >)$ may contain no elements at all
 - $X = [0, \infty)$ with $x \in X$ representing x dollars
 - $A \subseteq X, A = \{1, 2, 3, \ldots\}$
 - Always prefers more money to less $x > y$ whenever $x > y$
 - Then $c(A; >)$ will be empty
 - The same when $A = [0, 10)$ and money is infinitely divisible

- In the examples above, $c(A; >)$ is empty because A is too large or not nice - it may be that $c(A; >)$ is empty because $>$ is badly behaved
 - Suppose $X = \{x, y, z, w\}$, and $x > y, y > z, \text{and } z > x$. Then $c(\{x, y, z\}; >) = \emptyset$
WARP

- **Weak Axiom of Revealed Preference**: if \(x \) and \(y \) are both in \(A \) and \(B \) and if \(x \in c(A) \) and \(y \in c(B) \), then \(x \in c(B) \) (and \(y \in c(A) \)).

- It may be decomposed into two properties:
 - **Sen’s property** \(\alpha \): If \(x \in B \subseteq A \) and \(x \in c(A) \), then \(x \in c(B) \).
 - **Sen’s property** \(\beta \): If \(x, y \in c(A), A \subseteq B \) and \(y \in c(B) \), then \(x \in c(B) \).

- If the world champion in some game is a Pakistani, then he must also be the champion of Pakistan.

- **Observation**:
 - Property \(\alpha \) specializes to the case \(A \subseteq B \)
 - Property \(\beta \) specializes to the case \(B \subseteq A \).
Rational preferences induce rational choice rule

Proposition: Suppose that \(> \) is asymmetric and negatively transitive. Then:

(a) For every finite set \(A \), \(c(A; >) \) is nonempty

(b) \(c(A; >) \) satisfies WARP

Proof.

Part I: \(c(A; >) \) is nonempty:

- We need to show that the set \(\{ x \in A : \forall y \in A, y \not> x \} \) is nonempty
- Suppose it was empty - then for each \(x > A \) there exists a \(y \in A \) such that \(y > x \).
- Pick \(x_1 \in A \) (\(A \) is nonempty), and let \(x_2 \) be \(x_1 \)'s "\(y \)".
- Let \(x_3 \) be \(x_2 \)'s "\(y \)", and so on. In other words, take \(x_1, x_2, x_3 \ldots \in A \), such that \(\ldots x_n > x_{n-1} > \ldots > x_2 > x_1 \)
- Since \(A \) is finite, there must exist some \(m \) and \(n \) such that \(x_m = x_n \) and \(m > n \).
- But this would be a cycle. Contradiction.
- So \(c(A; >) \) is nonempty. **End of part I.**
Part II: \(c(A, \succ) \) satisfies WARP:

- Suppose \(x \) and \(y \) are in \(A \cap B \), \(x \in c(A, \succ) \) and \(y \in c(B, \succ) \).
- Since \(x \in c(A, \succ) \) and \(y \in A \), we have that \(y \nsubsetneq x \).
- Since \(y \in c(B, \succ) \), we have that for all \(z \in B \), \(z \nsubsetneq y \).
- By negative transitivity of \(\succ \), for all \(z \in B \) it follows that \(z \nsubsetneq x \).
- This implies \(x \in c(B, \succ) \).
- Similarly for \(y \in c(A, \succ) \). End of part II.

QED
Choice rules as a primitive

- Let us now reverse the process: We observe choice and want to deduce preferences.

Definition: A choice function on X is a function c whose domain is the set of all nonempty subsets of X, whose range is the set of all subsets of X, and that satisfies $c(A) \subseteq A$, for all $A \in X$.

- **Assumption:** The choice function c is nonempty valued: $c(A) \neq \emptyset$, for all A.

- **Assumption:** The choice function c satisfies Weak Axiom of Revealed Preference: If $x, y \in A \cap B$ and if $x \in c(A)$ and $y \in c(B)$, then $x \in c(B)$ and $y \in c(A)$.

Proposition: If a choice function c is nonempty valued and satisfies property α and property β (and hence WARP), then there exists a preference relation \succ such that c is $c(\cdot, \succ)$.
Rational choice rule induces rational preferences

Proof.

- Define \(\succ \) as follows:

\[
x \succ y \iff x \not\equiv y \text{ and } c(\{x, y\}) = \{x\}
\]

- This relation is obviously asymmetric.

Part I: \(\succ \) is negatively transitive

- Suppose that \(x \not\succ y \) and \(y \not\succ z \), but \(x \succ z \).
- \(x \succ z \) implies that \(\{x\} = c(\{x, z\}) \), thus \(z \not\in c(\{x, y, z\}) \) by property \(\alpha \)
- Since \(z \in c(\{y, z\}) \), this implies \(y \not\in c(\{x, y, z\}) \) again by property \(\alpha \)
- Since \(y \in c(\{x, y\}) \), implies \(x \not\in c(\{x, y, z\}) \) again by...
- Which is not possible since \(c \) is nonempty valued. Contradiction
- Hence \(\succ \) is negatively transitive. End of part I.
Rational choice rule induces rational preferences

Part II: $c(A, \succ) = c(A)$ for all sets A

- Fix a set A

 (a) If $x \in c(A)$, then for all $z \in A$, $z \not\succ x$. For if $z \succ x$, then $c(\{x, z\}) = \{z\}$, contradicting property α. Thus $x \in c(A, \succ)$

 (b) If $x \notin c(A)$, then let z be chosen arbitrarily from $c(A)$. We claim that $c(\{z, x\}) = \{z\}$ - otherwise property β would be violated. Thus $z \succ x$ and $x \notin c(A, \succ)$.

- Combining (a) and (b), $c(A, \succ) = c(A)$ for all A. End of part II.

QED
Utility representation

Definition: Function $u : X \rightarrow \mathbb{R}$ represents rational preference relation \succ if for all $x, y \in X$ the following holds

$$x \succ y \iff u(x) > u(y)$$

- The representation is always well defined since \succ on \mathbb{R} satisfies negative transitivity and asymmetry.

Proposition: If u represents \succ, then for any strictly increasing function $f : \mathbb{R} \rightarrow \mathbb{R}$, the function $v(x) = f(u(x))$ represents \succ as well. **Proof.**

$$x \succ y$$
$$u(x) > u(y)$$
$$f(u(x)) > f(u(y))$$
$$v(x) > v(y)$$

QED
Lemma:
In any finite set $A \subseteq X$, there is a minimal element (similarly, there is also a maximal element).

Proof:
By induction on the size of A. If A is a singleton, then by completeness its only element is minimal. For the inductive step, let A be of cardinality $n + 1$ and let $x \in A$. The set $A - \{x\}$ is of cardinality n and by the inductive assumption has a minimal element denoted by y. If $x \preceq y$, then y is minimal in A. If $y \succeq x$, then by transitivity $z \succeq x$ for all $z \in A - \{x\}$, and thus x is minimal.
Utility representation for finite sets

Claim:
If \succeq is a preference relation on a finite set X, then \succeq has a utility representation with values being natural numbers.

Proof:
We will construct a sequence of sets inductively. Let X_1 be the subset of elements that are minimal in X. By the above lemma, X_1 is not empty. Assume we have constructed the sets X_1, \ldots, X_k. If $X = X_1 \cup X_2 \cup \cdots \cup X_k$, we are done. If not, define X_{k+1} to be the set of minimal elements in $X - X_1 - X_2 - \cdots - X_k$. By the lemma $X_{k+1} \neq \emptyset$. Because X is finite, we must be done after at most $|X|$ steps. Define $U(x) = k$ if $x \in X_k$. Thus, $U(x)$ is the step number at which x is “eliminated”. To verify that U represents \succeq, let $a \succ b$. Then $a \notin X_1 \cup X_2 \cup \cdots X_{U(b)}$ and thus $U(a) > U(b)$. If $a \sim b$, then clearly $U(a) = U(b)$.
Definition: A preference relation \succ on X is continuous if for all $x, y \in X$, $x \succ y$ implies that there is an $\epsilon > 0$ such that $x' \succ y'$ for any x' and y' such that $d(x, x') < \epsilon$ and $d(y, y') < \epsilon$.

Proposition: Assume that X is a convex subset of \mathbb{R}^n. If \succ is a continuous preference relation on X, then \succ has a continuous utility representation.
Utility representation result II

Monotonicity:
The relation \succeq satisfies *monotonicity at the bundle* y if for all $x \in X$,
 if $x_k \geq y_k$ for all k, then $x \succeq y$, and
 if $x_k > y_k$ for all k, then $x > y$.

The relation \succeq satisfies *monotonicity* if it satisfies monotonicity at every $y \in X$.

Proposition: Any preference relation satisfying monotonicity and continuity can be represented by a utility function
Proof

- Take any bundle \(x \in \mathbb{R}^n_+ \).
- It is at least as good as the bundle \(0 = (0, ..., 0) \).
- On the other hand \(M = (\max_k \{x_k\}, ..., \max_k \{x_k\}) \) is at least as good as \(x \).
- Both \(0 \) and \(M \) are on the main diagonal.
- By continuity there is a bundle on the main diagonal that is indifferent to \(x \).
- By monotonicity this bundle is unique, denote it by \((t(x), ..., t(x)) \).
- Let \(u(x) = t(x) \). We show that \(u \) represents the preferences:
 - By transitivity, \(x \succeq y \iff (t(x), ..., t(x)) \succeq (t(y), ..., t(y)) \).
 - By monotonicity this is true if and only if \(t(x) \geq t(y) \).

QED